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Abstract. A brain tumor is an abnormal cell growth in or around the brain, which is be-
nign or malignant. MRI scans are extensively used for their high resolution and superior
contrast, enabling precise classification of brain tumors. However, accurate identification
of brain tumors through MRI scans is crucial, hence a novel, Multiscale Frangi suscep-
tibility Cat Randomized Gaussian Gray-level Matrix has been proposed to classify brain
tumors using MRI. Which, MRI data extraction faces challenges due to partial volume ef-
fects, tissue misclassification, and dynamic venous blood flow, particularly in intertwined
vessels and neural tissue. Thus, the Dynamic Multiscale Frangi susceptibility-weighted
Contrast is introduced, and the multiscale Frangi filter enhances the vessel structures
across different scales. Susceptibility-Weighted Imaging (SWI) and Dynamic Susceptibil-
ity Contrast (DSC) within a stacked CNN architecture integrating these techniques, for
enhancing clinical interpretation accuracy and reliability. Furthermore, limited research
on brain tumor classification using Venous Collateralization Patterns and Peritumoral
Edema Characteristics is delayed by existing imaging markers, due to a lack of standard-
ized protocols, and poor accuracy. So, Extreme Spatial Channel Cat Randomized Trees
are presented with Spatial Channel-Wise Attention (SCA), CatBoost and Extremely Ran-
domized Trees (ERT). Incorporating these methods into a stacked CNN to enhance the
precision of brain tumor classification. Moreover, existing algorithms struggle to accu-
rately measure tumor spatial distribution and complex morphological variations, limiting
their ability to accurately measure lacunarity value and delay survival rate predictions.
Therefore, the Gaussian Gray-level size length matrix was offered through the utilization
of the Gray-Level Run Length Matrix (GLRLM), Gray-Level Size Zone Matrix (GLSZM),
and Gaussian Kernel by incorporating in the Stacked CNN layer, it enhances prediction
accuracy by accurately capturing the spatial distribution of gaps or clusters within tu-
mors, improving tumor morphology understanding and patient care.
Keywords: Brain Tumor Classification, Intertwined Vessels, Neural Tissue, Complex
Vascular Patterns, Vessel Structure Enhancement

1. Introduction. Brain tumors, abnormal growths of cells within the brain, manifest
with a myriad of symptoms ranging from headaches and seizures to cognitive impairment
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and personality changes. Early diagnosis is crucial in mitigating potential complications
and improving treatment outcomes. Magnetic Resonance Imaging (MRI) plays a pivotal
role in the detection and classification of brain tumors due to its unparalleled ability
to provide detailed images of the brain’s anatomy and pathology. By utilizing power-
ful magnetic fields and radio waves, MRI produces high-resolution images that aid in
identifying the location, size, and characteristics of tumors within the brain. Moreover,
advanced MRI techniques such as diffusion-weighted imaging and perfusion imaging of-
fer insights into tumor aggressiveness and vascularity, facilitating precise diagnosis and
treatment planning. With its non-invasive nature and superior imaging capabilities, MRI
significantly contributes to the early detection and accurate classification of brain tumors,
thereby guiding clinicians in delivering timely and tailored interventions to patients for
optimal outcomes and improved quality of life [1-4].

In classifying benign and malignant brain tumors such as Ganglioglioma, Oligoden-
droglioma, Schwannoma, Ependymoma, Glioblastoma, and Medulloblastoma using ex-
tracted cerebral venous system features from MRI, various feature extraction and seg-
mentation methods are employed. These include region-based methods like thresholding
and clustering, which segment brain structures based on intensity or statistical proper-
ties, while edge-based methods detect boundaries using gradient information. Hybrid
approaches, such as active contours and machine learning algorithms like convolutional
neural networks (CNNs), combine both region and edge information for improved accu-
racy. Challenges arise due to the intricate nature of cerebral venous structures, which
is challenging to separate from surrounding tissues, especially in the presence of noise,
intensity in homogeneities, and anatomical variability in MRI images. Furthermore, the
distinction between benign and malignant tumors based solely on venous features ex-
tracted from MRI is complex, as these tumors may exhibit similar vascular patterns.
Additionally, the computational complexity and time-consuming nature of some segmen-
tation methods pose practical challenges in clinical settings, emphasizing the need for
robust algorithms capable of accurately extracting cerebral venous system features for
effective tumor classification and diagnosis [5-8].

After extracting the features, classification methods are employed for classifying the
brain tumors using MRI, including Venous Collateralization Patterns and Peritumoral
Edema, ranging from conventional SVMs, decision trees, and random forests to deep
learning CNNs. SVMs and decision trees handle high-dimensional data but may strug-
gle with complex feature relationships, while random forests mitigate overfitting but lack
interpretability. Deep learning, notably CNNs, excels at feature extraction but demands
extensive annotated data and computational resources. Challenges include accurately de-
lineating tumor borders, discerning edema from healthy tissue, and variability in imaging
protocols affecting results. Integrating multi-modal data and addressing class imbalance
are additional hurdles. Concerns about the interpretability of deep learning models con-
tinue to hinder their clinical acceptance. Mitigation strategies involve data augmentation,
transfer learning, and ensembling for improved generalization in brain tumor classification
[9-12].

Moreover, after classifying the tumor then predicts the survival rate of patients. These
include traditional machine learning techniques such as logistic regression, support vector
machines (SVM), random forests, and artificial neural networks (ANNs). Additionally,
more advanced approaches like convolutional neural networks (CNNs) have been increas-
ingly explored due to their ability to automatically extract features from MRI images.
Challenges in these methods arise from the complexity and heterogeneity of brain tu-
mors, which make accurate prediction difficult. Limited sample sizes and data imbalance
further compound these challenges, leading to issues with overfitting and generalization.
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Moreover, preprocessing MRI data to extract relevant features while minimizing noise and
artifacts adds another layer of complexity. Interpretability of results and the integration
of clinical data with imaging data also pose significant challenges in accurately predict-
ing survival rates. Additionally, ensuring the robustness and reproducibility of predictive
models across different patient cohorts and imaging protocols remains a key concern.
Overall, while these methods show promise, addressing these challenges is crucial to im-
proving the accuracy and reliability of survival rate predictions for brain tumor patients
using MRI data [13-15]. Even though there are many developments in the detection and
classification of brain tumors using MRI, there are still many improvements needed to
enhance the classification accuracy by solving issues in the extraction of features from
MRI and classifying the tumor using those features and other limitations in the present
research. Major contributions of this paper are given below
� To improve the delineation of complex vessel networks, particularly in regions where

vessels are intertwined with neural tissue, a novel Dynamic Multiscale Frangi susceptibility-
weighted Contrast has been proposed, which effectively utilizes the strengths of each
method to simplify cerebral venous system extraction from MRI, enhancing clinical inter-
pretation accuracy and reliability.
� To classify brain tumor using Venous Collateralization Patterns and Peritumoral

Edema Characteristics, a novel Extreme Spatial Channel Cat Randomized Trees is intro-
duced, this enhances brain tumor classification accuracy by addressing collateralization
and optimizing the utilization of comprehensive imaging markers.
� To accurately measure tumor spatial distribution and complex morphological varia-

tions, a novel Gaussian Gray-level size length matrix is presented, which enhances predic-
tion accuracy by accurately capturing the spatial distribution of gaps or clusters within
tumors, improving understanding of tumor morphology and enhancing patient care.

The paper’s content is structured as follows: Section 2 covers the literature survey,
discussing existing contributions relevant to classifying brain tumor with MRI scans. Sec-
tion 3 outlines the proposed methodology and its functioning. Section 4 delves into the
evaluation, performance, and comparative analysis of the proposed model. Lastly, Section
5 provides the conclusion for the paper.

2. Literature Survey. Javeria et al [16] suggested a fully automated heterogeneous seg-
mentation system utilizing support vector machines (FAHS-SVM) for deep learning-based
brain tumor segmentation. The current work suggests adding a new, totally automatic
approach based on anatomical, morphological, and relaxometry features to separate the
entire cerebral venous system into MRI imaging. A high degree of homogeneity between
the architecture and surrounding brain tissue characterizes the segmenting function. An
ELM is a kind of learning algorithm that has one or more hidden node layers. The
probabilistic neural network classification method has been used to train and assess the
tumor detection accuracy in brain MRI images. However, the drawback of the proposed
approach was its reliance on predetermined features, potentially limiting adaptability
to diverse datasets and reducing overall segmentation accuracy due to feature selection
biases.

Yakub et al [17] suggested a Faster R-CNN deep learning system that used the Re-
gion Proposal Network (RPN) to mark the location of the tumor’s appearance. There are
three main types of brain cancers in the chosen MR imaging dataset: glioma, meningioma,
and pituitary. The region proposal network and the classifier network in the suggested
approach both use the VGG-16 architecture as their foundation layer. The algorithm’s
detection and classification findings show that it detected gliomas with an average preci-
sion of 75.18%, meningiomas with an average precision of 89.45%, and pituitary tumors
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with an average precision of 68.18%. However, the proposed method suffers from reduced
performance in detecting pituitary tumors compared to other types, indicating potential
limitations in generalization across different tumor classes.

Milica et al [18] developed a novel CNN architecture for the categorization of three
different forms of brain tumors. The created network was evaluated on T1-weighted
contrast-enhanced magnetic resonance imaging, and it was less complex than previously
developed pre-trained networks. Four methods were used to assess the network’s perfor-
mance: two databases and two combinations of two 10-fold cross-validation techniques.
The network’s capacity to generalize was evaluated using subject-wise cross-validation,
one of the ten-fold approaches, and its improvement was evaluated using an enhanced
picture database. However, the proposed method faced challenges in scalability and gen-
eralization to new datasets due to its specific design tailored to T1-weighted contrast-
enhanced MRI, potentially limiting its applicability in broader clinical contexts.

Cheng et al [19] aimed to determine whether the meningioma’s PTBE volume and its
diffusion and perfusion characteristics correlate. Retrospectively analyzed 70 consecutive
individuals with meningiomas who had preoperative DTI and DSC-PWI (mean age, 58.9
± 13.7 years; 37 women). The tumor’s PTBE volume, tumor volume, mean T2 signal,
ADC, FA, and CBV were all measured. T2 signal intensity, volume, ADC, FA, and CBV of
tumors were evaluated between meningiomas with and without PTBE, as well as patient
age and sex. T2 signal intensity, volume, ADC, FA, and CBV of tumors were analyzed
in meningiomas with PTBE, along with correlations of PTBE volume with patient age
and sex. To find the variables related to PTBE volume, multivariable linear regression
analysis was done. However, the drawback lies in its retrospective design, which intro-
duced biases and limitations in data collection and interpretation, affecting the reliability
and generalizability of the correlation findings between meningioma characteristics and
peritumoral edema volume.

Mobarakol et al [20] developed an attention-based convolutional neural network (CNN)
to extract brain tumor information from MRIs. Additionally, use a variety of machine
learning techniques to forecast the survival rate. Then, conduct segmentation by inte-
grating channel and spatial attention with the decoder network using a 3D UNet archi-
tecture. Utilizing the geometry, position, and shape of the segmented tumor, extract
some novel radiomic signals and combine them with clinical data to forecast the length
of survival for each patient. To demonstrate the impact of each attribute on overall sur-
vival (OS) prediction, also conduct in-depth studies. However, the proposed approach
encounters challenges in clinical adoption due to the complexity of integrating radiomic
features with clinical data, potentially hindering interpretability and usability for health-
care practitioners. Lee et al [21] determined lacunarity and fractal dimension values
for anomalies on gadolinium-enhanced T1-weighted magnetic resonance imaging (T1Gd
MRI), T2-weighted (T2), and fluid-attenuated inversion recovery (FLAIR) MRIs that
were caused by glioblastoma. Attempt to establish a relationship between the survival of
GBM patients and these morphological parameters determined from pretreatment MRI
in the patient cohort (n=402). Lacunarity and fractal dimension were computed on all
MRI slices for necrotic regions (n = 390), abnormalities on T1Gd MRI (n = 402), and
enhanced abnormalities on T2/FLAIR MRI (n = 257). Also, investigated how these pa-
rameters related to anomaly volume and age at diagnosis. For all three imaging subtypes,
statistically significant associations with the final result; the most robust association was
observed between the overall survival and the kind of T2/FLAIR abnormalities. However,
the proposed method faces challenges in directly translating lacunarity and fractal dimen-
sion values into actionable clinical insights or treatment strategies, highlighting potential
limitations in bridging the gap between radiological findings and patient outcomes.
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Kibriya et al. [22] introduced a novel fully automated method for brain tumor identi-
fication and classification that combined hand-engineered and deep features to improve
accuracy. The approach addressed the limitations of relying solely on deep learning al-
gorithms, which typically require extensive labeled data. By incorporating a supervised
approach, the method enhanced the classification process, surpassing existing methods in
speed and accuracy for brain cancer detection. This framework provided a more efficient
and precise diagnostic tool for medical professionals. By leveraging an ensemble of deep
and hand-crafted features, the system enhanced discriminative capabilities in brain tumor
detection. However, the focus was primarily on classification rather than segmentation, a
critical step in the comprehensive analysis of medical images for diagnosis and treatment
planning.

Sarkar et al [23] suggested using an AlexNet CNN to separate MRI datasets into train-
ing and test data, as well as for feature extraction, which enhanced classification accuracy.
They employed BayesNet, SMO, NB, and RF classifiers to classify brain tumors as no-
tumor, glioma, meningioma, and pituitary tumors, achieving high accuracy rates. The
limitations of conventional machine learning techniques were addressed by automatically
extracting important features using deep learning, leading to improved classification per-
formance. The combination of AlexNet CNN feature extractor and prominent machine
learning classifiers contributed to the field of medical image analysis. However, there
was no exploration of the generalizability of the proposed model to different datasets or
imaging modalities, limiting the broader applicability of the approach.

Archana et al [24] proposed a novel method, Bagging Ensemble with K-Nearest Neigh-
bor (BKNN), to enhance the accuracy and quality rate of brain tumor identification using
MRI images. This addresses the importance of accurate brain tumor detection using MRI
imaging techniques and highlights the significance of early tumor detection for improved
treatment options and patient survival rates. It emphasizes the use of U-Net architecture
for image segmentation and a bagging-based k-NN prediction algorithm for classification,
aiming to improve accuracy and parameter distribution in the layers. However, the seg-
mentation outcomes heavily rely on the dispersion of training and testing models and
features used, which affect the process of classification accuracy.

Ghafourian et al. [25] introduced a novel approach to diagnose brain tumors by inte-
grating data mining and machine learning techniques, enhancing the efficiency of brain
tumor detection in MR images. It utilizes the Social Spider Optimization (SSO) algorithm
for MRI image segmentation, leading to more precise identification of tumor regions and
extracts distinctive features using the SVD technique, which not only removes redundant
information but also speeds up processing at the classification stage. By combining Naive
Bayes, Support Vector Machine, and K-nearest neighbor algorithms, the model achieves
high accuracy, sensitivity, and specificity in diagnosing brain tumors, surpassing previous
efforts. However, the longer training time potentially impact the real-time applicability
of the model in clinical settings.

From the above studies, it is clear that [16] decreasing segmentation accuracy overall
and restricting adaptation to different datasets, [17] restrictions on generalization between
various tumor classes, in [18] difficulties with scaling and generalizing to new datasets as
a result of its unique architecture for T1-weighted contrast-enhanced magnetic resonance
imaging, in [19] influencing the findings of the link between the volume of peritumoral
edema and the characteristics of meningiomas, in [20] intricacy of combining radiomic
features with clinical data presents adoption issues in the clinical setting, in [21] difficult
to directly convert lacunarity and fractal dimension values into useful clinical insights or
treatment plans, in [22] it focuses on the classification aspect of brain tumors using the
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ensemble of features but does not delve into the segmentation of tumors, in [23] gener-
alizability of the proposed model, limiting the broader applicability, in [24] segmentation
outcomes heavily rely on the dispersion of training and testing models and features used,
which can affect the process of classification accuracy, in [25] longer training time poten-
tially impact the real-time applicability of the model. Hence, there is a need for a novel
method to eliminate these drawbacks and increase the accuracy of the classification of
brain tumors.

3. Enhancing the Classification Accuracy of Brain Tumors using MRI. Brain
tumors are abnormal masses of cells that grow within the brain, potentially disrupting its
functions and causing various neurological symptoms. Existing works utilize MRI scans
for precise classification of brain tumors, which able to be benign or malignant, char-
acterized by abnormal cell growth. However, the accurate classification of brain tumor
using MRI scans are critical. Hence a novel, “Multiscale Frangi susceptibility Cat Ran-
domized Gaussian Gray-level Matrix” has been proposed, to address the limitations from
the existing studies and improve the classification accuracy of brain tumors using MRI.
In which the cerebral venous system is crucial for tumor diagnosis and characterization.
But, extracting it in MRI presents challenges due to partial volume effects and tissue
misclassification. This is especially difficult in regions where vessels intertwine with ar-
teries or neural tissue. The dynamic nature of venous blood flow also complicates signal
interpretation, with slow or stagnant flow leading to signal loss and fast-flowing blood
enhancing signal intensity.

To address this issue, a novel approach called Dynamic Multiscale Frangi susceptibility-
weighted Contrast is introduced to enhance vessel structures across different scales by ap-
plying a multiscale Frangi filter. This model incorporates Susceptibility-Weighted Imaging
(SWI) an advanced MRI technique that uses the magnetic properties (susceptibility) of
different tissues to create high-contrast images of the brain, enhancing visualization of ve-
nous blood and vessel delineation and Dynamic Susceptibility Contrast (DSC) a functional
MRI technique that evaluates cerebral blood flow and volume by tracking the passage of a
contrast agent through the brain’s vasculature, enabling the distinction between slow and
fast blood flow. By integrating these techniques within a stacked Convolutional Neural
Network (CNN) architecture, leverages the complementary strengths of each method. The
CNN architecture allows for the efficient processing of MRI images, extracting relevant
features, and making accurate classifications, thereby improving accuracy and reliability
in clinical interpretation.

Additionally, MRI extracts from the cerebral venous system provide accurate classifica-
tion of brain tumors like Ganglioglioma, Oligodendroglioma, Schwannoma, Ependymoma,
Glioblastoma, and Medulloblastoma. Though, limited research focusing on classifying
brain tumors using Venous Collateralization Patterns and Peritumoral Edema Charac-
teristics, which are the features extracted from the cerebral venous system. Variations in
vascular anatomy and drainage, along with factors like tumor size, location, and histo-
logical subtype, lead inconsistencies in collateralization patterns and peritumoral edema
classification. However, existing classification methods struggle to adapt features like
tumor size and shape to complex vascular patterns and edema characteristics due to tra-
ditional imaging markers and lack of standardized protocols for feature extraction and
integration, leading to poor classification accuracy and complicating the integration of
venous collateralization patterns and peritumoral edema characteristics. Thus, a novel
Extreme Spatial Channel Cat Randomized Trees is presented, to address the challenges
of existing methods and significantly improving classification accuracy. This model in-
tegrates Spatial Channel-Wise Attention (SCA) an advanced mechanism used in neural
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networks, particularly in Convolutional Neural Networks (CNNs), to focus on informa-
tive input data, reducing irrelevant data and noise, enhancing feature representation and
accurately capturing subtle differences between brain tumor types.

Similarly, by incorporating CatBoost a machine learning algorithm to handle cate-
gorical data efficiently and Extremely Randomized Trees (ERT), an ensemble learning
method that builds multiple decision trees, where CatBoost is known for its handling of
categorical features and robustness against overfitting, while ERT improves classification
by averaging multiple, unpruned decision trees. By incorporating these techniques within
a stacked Convolutional Neural Network (CNN) allows the model incorporates features
related to the cerebral venous system and edema for accurate tumor classification, ad-
dressing standardized protocol issues and adapting to individual tumor characteristics.
Furthermore, the classification of tumors focuses on patient survival rates, focusing on
lacunarity values. However, extracting these values is complex due to the heterogeneous
nature of the tumor.

Existing algorithms struggle to accurately measure the spatial distribution of gaps or
clusters within tumors due to their reliance on predefined features and thresholds, which
do not adequately represent the complex morphological variations in heterogeneous tu-
mors, thereby delaying precise survival rate predictions based on lacunarity values. So,
a novel Gaussian Gray-level size length matrix is introduced, to capture complex spa-
tial and morphological variations that are critical for accurate predictions, it combines
the principles of the Gray-Level Run Length Matrix (GLRLM) a statistical tool used
to quantify texture in an image, to captures the length of consecutive gray level runs
along specific directions, aids in identifying patterns and structures within images, aiding
in the identification of different tissue types or abnormalities, and Gray-Level Size Zone
Matrix (GLSZM), provides information on the size of homogeneous zones in an image, to
quantifies the size of homogeneous zones in an image, providing insights into tumor struc-
ture and complexity by measuring clusters of pixels that share identical gray levels, and
Gaussian kernels is a smoothing operator that emphasizes spatial relationships within the
image by applying a Gaussian function to the pixel values, which enhances the visibility
of spatial relationships by reducing noise and highlighting significant structures, making
it easier to identify patterns and variations in the image.

After the features extracted from GLRLM and GLSZM, along with the smoothed image
data from the Gaussian kernel, are fed into a Stacked (CNN) model which learn complex
and non-linear relationships between the extracted features and survival outcomes. Con-
sequently, the proposed method enhances prediction accuracy by accurately capturing
tumor morphology’s complex spatial distribution of gaps or clusters, thereby improving
patient care.

Figure 1 depicts a complex process for classifying brain tumors using MRI scans, start-
ing with input images processed through stages: extraction of the cerebral venous sys-
tem, feature extraction focusing on Venous Collateralization Patterns and Peritumoral
Edema Characteristics, classification using Extreme Spatial Channel Cat Randomized
Trees within a stacked CNN architecture, and achieving high classification accuracy for
various tumor types like Glioblastoma, Oligodendroglioma, Schwannoma, Ependymoma,
and Medulloblastoma. The method integrates advanced imaging techniques and machine
learning algorithms to improve accuracy, addressing challenges in medical imaging analysis
and potentially improving patient outcomes. Additionally, the inclusion of the Gaussian
Gray-level size length matrix enhances prediction accuracy by capturing complex spa-
tial and morphological variations critical for accurate predictions, ultimately enhancing
patient care.
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Figure 1. Block Diagram of Multiscale Frangi susceptibility Cat Random-
ized Gaussian Gray-level Matrix

3.1. Improved Venous Vessel Visualization and Differentiation. To tackle the
complexities involved in extracting the cerebral venous system from MRI scans, the Dy-
namic Multiscale Frangi susceptibility-weighted contrast (DMFSWC) technique is intro-
duced to enhance the visualization and differentiation of venous vessels from surrounding
tissues, ultimately improving the classification accuracy of brain tumors. This technique
integrates several methods to achieve its objectives. Initially, the Multiscale Frangi Filter
enhances vessel structures across different scales, minimizing partial volume effects and
aiding in the differentiation of intertwined vessels and neural tissue. Then, Susceptibility-
Weighted Imaging (SWI) leverages susceptibility differences in tissues, particularly in
venous blood, to improve their visualization. SWI enhances the delineation of venous
vessels from surrounding structures, aiding in their identification and differentiation. Fi-
nally, Dynamic Susceptibility Contrast (DSC) provides dynamic information about blood
flow, allowing discrimination between slow or stagnant flow and fast-flowing blood. By
integrating these methods within a stacked CNN architecture, the technique capitalizes on
the complementary strengths of each, addressing the intricacies associated with cerebral
venous system extraction from MRI scans. The following subsections explained above
statements.

Stacked CNN, this method uses MRI data, undergoes convolution, multiple filters,
susceptibility weighted imaging, dynamic susceptibility contrast, within a stacked CNN
architecture to process features, resulting in cerebral venous structures.
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Figure 2. Dynamic Multiscale Frangi susceptibility-weighted contrast
within Stacked CNN

3.1.1. Multiscale Frangi Filter. To enhance and extract vessel-like structures from images,
an image processing technique named Multiscale Frangi Filter is used. It is a variant of
the Frangi filter that operates across multiple scales, enabling it to capture vessels of
different sizes within an image. Multiscale Frangi filtering is a powerful technique used to
enhance linear structures such as blood vessels in medical images. This filtering is based
on analyzing the local curvature of the image intensity using the Hessian matrix. The
first step involves computing the Hessian matrix of the image. The Hessian matrix is a
square matrix of second-order partial derivatives that describes the local curvature of a
function. For an image I, the Hessian matrix H at each pixel is given in equation (1) [26]:

H =

[
Ixx Ixy
Iyx Iyy

]
(1)

In the above equation, the second partial derivatives of image I are specified as Iyx,
Ixy, Ixx, and Iyy, in which Ixx is in x direction, Iyy is in y direction and Ixy and Iyx are
in xy direction. The two eigenvalues corresponding to the Hessian matrix, are λ1 and λ2,
and it reveals information about the curvature of the image intensity.

Eigenvalue λ1: Represents the curvature in the direction where the change in intensity
is minimal.

Eigenvalue λ2: Represents the curvature in the direction where the change in intensity
is maximal.

For a vessel-like structure, |λ1| ≪ |λ2| indicates a small gradient in one direction and
a larger gradient in the perpendicular direction. It suggests that one direction has little
change, while the perpendicular direction has a steep change.

To quantify the vessel-likeness of a structure, two key ratios are used, Boldness Ratio
Rb given in equation (2):

Rb =

∣∣∣∣λ1

λ2

∣∣∣∣ (2)

Where, Rb measures the relative magnitudes of the eigenvalues λ1 and λ2. For vessel-like
structures, Rb should be small because |λ1| is much smaller than |λ2|, and Second-Order
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Structure Measure S given in equation (3):

S =
√
λ2
1 + λ2

2 (3)

Where, S quantifies the overall magnitude of the eigenvalues, reflecting the intensity of
the local structure. A higher value of S indicates stronger features in the image.

Then measure Vesselness Vσ at a pixel to quantify by combining the two feature op-
erators to produce a response of highlighted vessel-like structures, given in the equation
(4):

Vσ =

{
0, λ2 > 0

exp
(
− R2

b

2β2

)(
1− exp

(
− S2

2c2

))
, λ2 ≤ 0

(4)

When λ2 > 0: The response is zero, indicating no vessel-like structure.

When λ2 ≤ 0: The response is calculated using: exp
(
− R2

b

2β2

)
suppresses blob-like struc-

tures by being sensitive to Rb. A small Rb means a stronger response. Then 1−exp
(
− S2

2c2

)
emphasizes areas with strong structure S, leading to higher responses in vessel-like re-
gions. The parameters β and c are assigned for tuning the sensitivity of features concerning
Frangi filter and need to be tuned based on the specific application and characteristics of
the image.

For reducing high-frequency noise Gaussian filtering is used, which interferes with the
Hessian matrix calculations. The Gaussian filter for an image I at a point (x, y) is given
in equation (5):

Gδ(x, y) =
1

2πδ
exp

(
−x2 + y2

2δ2

)
(5)

The δ, which is the variable parameter, specifies the convolutional scale corresponding
to Gaussian filter. Larger values of δ lead to increased smoothing, effectively reducing
noise and making it easier to identify and enhance linear structures within the image. This
process helps to clarify the image by diminishing high-frequency noise, thereby facilitating
the detection of features like blood vessels.

Vessel structures appear at various scales within an image. To effectively capture vessels
of different sizes, the Frangi filter is applied at multiple scales, which is given in equation
(6):

V0 = max
δ

(V (δ)) (6)

By adjusting the parameter δ, the filter is capable of detecting structures of varying sizes,
from small to large vessels. The final vesselness value V0 for each pixel is determined
as the maximum response across all scales, ensuring that the most significant vessel-like
structure at that specific location is emphasized.

After applying the Frangi filter and aggregating the responses across multiple scales,
the resulting image undergoes normalization to a standardized range, typically between
0 and 255. This harmonizes the pixel values, ensuring that vessel structures stand out
distinctly against the background. This adjustment is essential for facilitating clear vi-
sualization and detailed analysis of the vascular network. The Frangi filter utilizes the
Hessian matrix to assess local curvature in an image, focusing on enhancing linear struc-
tures like blood vessels based on their specific curvature properties. Through eigenvalue
analysis and feature operators, it identifies these structures by integrating information
across multiple scales, effectively highlighting them across varying sizes and orientations.
Before normalization, Gaussian filtering is applied to reduce noise, ensuring clearer detec-
tion of vessel-like features. This preprocessing step enhances the accuracy of identifying
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blood vessels, making the subsequent analysis more reliable and conducive to detailed
medical imaging applications.

3.1.2. Susceptibility-Weighted Imaging (SWI). After applying the Multiple Frangi filter
in the Dynamic Multiscale Frangi Susceptibility-Weighted Contrast approach, the focus
shifts to enhancing the visualization of venous structures by leveraging magnetic sus-
ceptibility differences between tissues. This technique, known as Susceptibility-Weighted
Imaging (SWI), capitalizes on the distinct magnetic properties of veins compared to sur-
rounding brain tissue such as gray and white matter.

SWI operates by utilizing both magnitude and phase information obtained from MRI
scans, which are highly sensitive to magnetic susceptibility variations. It employs high-
resolution gradient-echo imaging coupled with phase information acquisition to effectively
highlight veins and other structures with unique magnetic characteristics, thereby maxi-
mizing sensitivity to susceptibility effects. The enhanced image contrast provided by SWI
is crucial for accurately delineating brain vasculature and detecting abnormalities such
as tumors and vascular malformations. SWI complements Frangi filtering, which identi-
fies vessel-like structures based on geometric features, by offering additional high-contrast
information based on magnetic properties.

The integration of SWI into the Dynamic Multiscale Frangi Susceptibility-Weighted
Contrast approach further enhances diagnostic accuracy by combining SWI with Frangi
filtering and other imaging modalities. This comprehensive method enables precise visu-
alization of venous involvement around tumors and facilitates the assessment of potential
vascular complications. Moreover, SWI contributes valuable insights into the relationships
between brain structure and function, supporting the monitoring of disease progression
over time and aiding in clinical decision-making.

3.1.3. Dynamic Susceptibility Contrast (DSC). Dynamic imaging is a magnetic resonance
imaging (MRI) technique used primarily to assess cerebral blood flow dynamics. It pro-
vides valuable information about the perfusion characteristics of tissues, including the
brain, by measuring changes in the MRI signal intensity over time following the injection
of a contrast agent (typically a gadolinium-based contrast agent).

DSC imaging relies on the principle that contrast agents alter the relaxation times (T1
and T2*) of tissues they perfuse. When a contrast agent is administered, it induces a
temporary reduction in MRI signal intensity owing to its paramagnetic characteristics,
influencing the local magnetic field and leading to signal attenuation. DSC provides real-
time information on blood flow by measuring alterations in MRI signal intensity caused
by the transit of the contrast agent through the vasculature. The temporal evolution
of signal intensity changes reflects the flow of contrast through arteries, capillaries, and
veins, enabling evaluation of perfusion parameters such as cerebral blood volume (CBV),
cerebral blood flow (CBF), and mean transit time (MTT).
� Cerebral Blood Volume (CBV): DSC estimates CBV, which is a measure of the total

volume of blood in a given region of brain tissue. This is essential for assessing tumor
vascularity, as tumors often exhibit increased CBV compared to normal brain tissue.
� Cerebral Blood Flow (CBF): It provides insights into the rate of blood flow through

brain tissue, helping to assess perfusion patterns. Changes in CBF indicate regions of
hypoperfusion or hyperperfusion, which may be indicative of pathology such as ischemia
or tumor growth.
� Mean Transit Time (MTT): MTT represents the average time taken for blood to pass

through a specified region of brain tissue. It reveals the abnormalities in vascular function
and is useful in evaluating treatment responses in conditions like stroke or brain tumors.
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These parameters aid in diagnosing brain tumors, assessing treatment responses, and
monitoring vascular dynamics critical for neurological conditions. DSC aids in assessing
tumor vascularity by comparing tumor tissue to normal brain tissue, with highly vas-
cularized tumors showing higher CBV and CBF values and it also supports treatment
planning and monitoring, assessing response to treatments like chemotherapy and radia-
tion therapy, and detecting changes in perfusion parameters post-treatment.

Dynamic Susceptibility Contrast offering dynamic information on cerebral blood flow
that is crucial for diagnosing, characterizing, and monitoring brain tumors and other neu-
rological disorders. Its ability to quantify perfusion parameters such as CBV, CBF, and
MTT ultimately improving diagnostic accuracy and treatment planning. DSC comple-
ments the multiscale Frangi filter and susceptibility-weighted imaging (SWI) components
of the technique by providing additional information on blood flow dynamics. It helps in
distinguishing between slow-flowing and fast-flowing blood, which is critical for accurate
interpretation of venous structures and their relationship to brain tumors.

3.1.4. Extracting relevant features, for Accurate Classifications. The ESCCRT (Extreme
Spatial Channel Cat Randomized Trees) framework integrates advanced techniques within
a stacked CNN architecture to enhance the classification of brain tumors from MRI scans.
Traditional methods typically focus on basic imaging markers such as tumor size and
shape, which may overlook crucial details like venous collateralization patterns and per-
itumoral edema characteristics. ESCCRT leverages deep learning capabilities to extract
and process complex features directly from MRI data.

By incorporating spatial channel-wise attention and randomized trees, ESCCRT ef-
fectively capture intricate information inherent in the cerebral venous system and other
advanced imaging modalities like SWI and DSC. This approach ensures that the model
robustly differentiate between different types of brain tumors based on comprehensive and
detailed features. Ultimately, ESCCRT aims to improve classification accuracy by provid-
ing a more sophisticated and reliable framework compared to existing methods, thereby
advancing the field of neuroimaging diagnostics and enhancing patient care outcomes.

Figure 3 depicts the flowchart for Dynamic Multiscale Frangi Susceptibility-Weighted
Contrast (DMFSWC). The process begins with data preprocessing, which includes initial-
ization and input of data. A Multiscale Frangi Filter is applied to enhance vessel structures
across different scales, mitigating partial volume effects and aiding in the differentiation
of intertwined vessels and neural tissue. Gaussian smoothing is applied to the images,
and images are normalized to enhance visualization of vessel structures. Susceptibility-
Weighted Imaging (SWI) is applied to improve the visibility of venous blood by exploiting
its susceptibility differences. Dynamic Susceptibility Contrast (DSC) is applied to provide
dynamic information about blood flow, enabling the discrimination between slow or stag-
nant flow and fast-flowing blood, thereby enhancing vessel identification. The enhanced
images are integrated into a stacked CNN architecture, fed into the CNN model, trained
on the enhanced images, and extracted complex features. The output features from the
trained model are obtained, and the process ends. This simplified flowchart provides a
visual representation of the proposed method, addressing challenges in extracting cere-
bral venous systems and classifying brain tumors more accurately by enhancing feature
representation and capturing complex vascular patterns.

3.2. Improving Classification Accuracy. The Extreme Spatial Channel Cat Random-
ized Trees (ESCCRT) technique is introduced in the proposed method for brain tumor
classification to overcome limitations in existing brain tumor classification methods, which
often struggle with integrating complex vascular patterns and edema characteristics from
MRI scans. By leveraging advanced ensemble learning techniques like CatBoost and
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Algorithm 1 Dynamic Multiscale Frangi Susceptibility-Weighted Contrast (DMFSWC)

1: Input: MRI scans of the brain, Gadolinium-based contrast agent (for DSC)
2: Output: Enhanced visualization of cerebral venous structures

3: Start:
4: Step 1: Preprocessing
5: Input the MRI scans.
6: Normalize the images to a standard intensity range (0-255).
7: Apply Gaussian smoothing to reduce high-frequency noise.
8: Step 2: Multiscale Frangi Filter
9: Compute the Hessian Matrix H for the image.

10: Compute the eigenvalues λ1 and λ2 of the Hessian matrix.
11: Compute the Blobness Ratio Rb and Second-Order Structure Measure S.
12: Calculate the vesselness measure Vσ for each pixel.
13: Apply the filter across multiple scales δ and determine the maximum response.
14: Normalize the resulting image to enhance vessel structures.
15: Step 3: Susceptibility-Weighted Imaging (SWI)
16: Acquire high-resolution gradient-echo MRI images.
17: Utilize both magnitude and phase information to emphasize susceptibility differences.
18: Phase information is especially useful for highlighting veins due to their magnetic

susceptibility.
19: Combine magnitude and phase data to enhance venous structure visualization.
20: Step 4: Dynamic Susceptibility Contrast (DSC)
21: Inject the gadolinium-based contrast agent.
22: Perform dynamic MRI scanning to track the contrast agent’s passage through the

brain’s vasculature.
23: Measure changes in MRI signal intensity over time.
24: Calculate perfusion parameters:
25: � Cerebral Blood Volume (CBV)
26: � Cerebral Blood Flow (CBF)
27: � Mean Transit Time (MTT)
28: Use DSC data to differentiate between slow-flowing and fast-flowing blood.
29: Step 5: Integration into Stacked CNN Architecture
30: Feed the enhanced images from Frangi filter, SWI, and DSC into a stacked CNN.
31: Implement Spatial Channel-Wise Attention (SCA) to focus on relevant features.
32: Utilize CatBoost and Extremely Randomized Trees (ERT) for robust classification.
33: Train the CNN model to learn intricate spatial patterns and morphological variations

from the processed MRI data.
34: Step 6: Feature Extraction and Classification
35: Extract complex features such as venous collateralization patterns and peritumoral

edema characteristics.
36: Output classified visualization of cerebral venous structures.
37: End

Extremely Randomized Tree (ERT) alongside Spatial Channel-Wise Attention (SCA),
to enhance the models ability to accurately classify tumors based on intricate features
extracted from imaging data.
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Figure 3. Flowchart for Dynamic Multiscale Frangi Susceptibility-
Weighted Contrast

Figure 4 illustrates Extreme Spatial Channel Cat Randomized Trees with Stacked CNN
involves input MRI scans of cerebral vessels, convolution, SCA block, CatBoost and Ex-
tremely Randomized Trees, with in the Stacked CNN’s convolution and max pooling
layers, and a final Dense layer for brain tumor classification, integrating venous features
for improved classification.

3.2.1. Capture Complex Vascular Patterns and Edema Characteristics. Spatial Channel-
Wise Attention (SCA) plays a crucial role in enhancing feature representation by selec-
tively focusing on informative channels within the data. In the context of brain tumor
classification from MRI scans, SCA can effectively capture complex vascular patterns and
edema characteristics extracted from the cerebral venous system. By integrating SCA
into the classification framework, the model can prioritize channels that contain critical
information related to venous collateralization patterns and peritumoral edema.



250 Sheethal. M. S, P. Amudha

Figure 4. Extreme Spatial Channel Cat Randomized Trees with Stacked
CNN

SCA combines the feature map Fl with the saliency map Sl to identify regions of interest
in the image. Then calculate the compatibility score in the ith region, ci, between Fl

and Sl. It is computed using the dot product of their respective vectors u, a learnable
parameter, and normalized using softmax as given in equation (7) [27]:

ci = (u, fl) + si (7)

Where, fl are the feature maps from Fl, and si are elements from Sl. Softmax op-
eration normalizes the compatibility score ci into attention coefficients, which highlight
emotionally relevant regions αi given in equation (8).

αi =
exp(ci)∑
j exp(cj)

(8)

Where, cj is the compatibility score in the jth region. Each feature map f i
l is weighted

by its corresponding attention coefficient αi given in equation (9).

U =
∑

αi · f i
l (9)

Where U is the aggregated output obtained by weighting each feature map, and f i
l

represents the ith feature map in the lth layer. Global average pooling aggregates spatial
information X across U dimensions into a channel descriptor zc given in equation (10).

zc =
1

X ×X

X∑
i=1

X∑
j=1

uc(i, j) (10)

Where uc specifies the channel c of feature map at position (i, j). Channel-wise statistics
zc are passed through excitation functions to emphasize informative channels given in
equation (11).

s = σ(W2 · ReLU(W1zc)) (11)



Enhanced Brain Tumor Detection Using Frangi Gaussian Matrix and CNNs on MRI 251

Where, W1 and W2 are learned weights, ReLU is a non-linear activation function and
σ is the sigmoid activation function. Channel uc is weighted by activations sc to produce
the final output efc given in equation (12).

efc = Fscale(uc, sc) = ucsc (12)

Fscale represents the collection of all efc, emphasizing channel-wise importance in cap-
turing complex vascular patterns and edema characteristics crucial for accurate brain
tumor classification.

3.2.2. Improving the Adaptability of the Model. CatBoost and Extremely Randomized
Trees (ERT) are powerful ensemble learning algorithms used for supervised classification
tasks. CatBoost, an advanced gradient boosting decision tree method, addresses predic-
tion shift and statistical challenges by iteratively improving predictions while handling
categorical features robustly through ordered boosting. It enhances model accuracy by
minimizing loss functions iteratively. Also, ERT, an extension of random forest method-
ology, excels in accuracy by leveraging multiple decision trees that vote collectively on
predictions. It accommodates large datasets without feature deletion, evaluates variable
importance comprehensively, and ensures efficiency in handling multi-dimensional input
characteristics.

CatBoost is based on gradient boosting decision trees and addresses prediction shift by
iteratively refining predictions through ordered boosting. The training process aims to
minimize the expected loss function L(F ), where F (t) represents the predicted output for
input t. The iterative update formula for CatBoost is given in equation (13) [28]:

Ft = Ft−1 + αht (13)

Where, Ft is the prediction at iteration t, Ft−1 is the prediction at iteration t− 1, α is
the learning rate and ht is the base predictor function at iteration t. CatBoost enhances
accuracy by sequentially improving the predictions based on the residuals.

ERT extends the random forest methodology by using multiple decision trees to col-
lectively determine predictions. It excels in accuracy by averaging the predictions from
numerous decision trees. The training process involves building multiple trees on random
subsets of the data and features. The predicted output F (t) at particular instance t is
determined by the voting mechanism across these trees given in equation (14) [29]:

F (t) =
1

N

N∑
i=1

fi(t) (14)

Where fi is the function of pixel-wise vector at ith decision tree, N is the total num-
ber of decision trees in the ensemble model used to calculate the average prediction.
By incorporating, CatBoost and ERT iteratively improve predictions (CatBoost through
boosting iterations and ERT through averaging multiple trees) to achieve high accuracy in
classification tasks, handling complex datasets with varying features and ensuring robust
performance in machine learning applications.

3.2.3. Accurately Differentiating Brain Tumor Types. A stacked CNN architecture en-
hancing the analysis of MRI data, particularly for brain tumor classification. By stacking
multiple convolutional layers, this architecture excels in extracting hierarchical features
from complex MRI images. It integrates advanced techniques such as Susceptibility-
Weighted Imaging (SWI) and Dynamic Susceptibility Contrast (DSC), which enhance the
visualization and analysis of the cerebral venous system. SWI highlights venous blood by
exploiting susceptibility differences, while DSC provides dynamic blood flow information.
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This deep learning framework enables the CNN to learn intricate spatial relationships
within the MRI data, crucial for accurately differentiating brain tumor types based on
features like venous collateralization patterns and peritumoral edema characteristics. The
stacked architecture’s ability to process these diverse features ensures robust classification
performance, surpassing existing methods reliant on simpler imaging markers.

Algorithm 2 Extreme Spatial Channel Cat Randomized Trees (ESCCRT)

1: Input: MRI scans of the brain with detailed venous structures and tumor character-
istics.

2: Output: Accurate classification of brain tumor types.

3: Start:
4: Step 1: Initialization
5: Initialize parameters and data structures.
6: Step 2: Feature Extraction using SCA
7: Compute feature maps Fl from the input MRI using convolutional layers.
8: Generate a saliency map Sl to highlight informative regions.
9: Compute the compatibility scores ci between fl and Sl using the dot product.

10: Normalize ci using softmax to obtain attention coefficients αi.
11: Weight each feature map fl by its attention coefficient αi.
12: Aggregate spatial information across U dimensions using global average pooling to

form channel descriptors.
13: Pass channel-wise statistic zc through excitation functions to emphasize informative

channels.
14: Weight channels uc by activations sc to produce the final output.
15: Step 3: Integration of CatBoost and ERT
16: Implement CatBoost and Extremely Randomized Trees (ERT) ensemble learning tech-

niques.
17: Step 4: Model Training and Evaluation
18: Train the ESCCRT model using the combined output ef from SCA and predictions

from CatBoost and ERT.
19: Assess the model’s performance using a validation set.
20: Step 5: Classification of Brain Tumor Types
21: Use the trained ESCCRT model to categorize types of brain tumors using extracted

features such as venous collateralization patterns and peritumoral edema characteris-
tics.

22: Step 6: Output
23: Output the classified brain tumor types along with confidence scores.
24: End

Figure 5 depicts the flowchart for Extreme Spatial Channel Cat Randomized Trees
(ESCCRT). The process begins with initialization, which involves setting up data and
model parameters. Spatial Channel-Wise Attention (SCA) is used to extract features
from MRI data, enhancing feature representation. CatBoost and Extremely Randomized
Trees (ERT) algorithms are integrated into the model, leveraging ensemble learning to
handle variations in vascular anatomy and drainage across individuals. The model is
trained on enhanced images and evaluated for performance, producing output features
likely related to tumor classification results. This simplified flowchart provides a visual
representation of the method, addressing challenges in extracting cerebral venous systems
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Figure 5. flowchart for Extreme Spatial Channel Cat Randomized Trees
(ESCCRT)

and classifying brain tumors more accurately by enhancing feature representation and
capturing complex vascular patterns.

3.3. Analyzing Survival Rates from Extracted MRI Scans. The Gaussian Gray-
level Size Length Matrix (GGSLM) technique has been introduced to specifically tackle the
complexities associated with analyzing survival rates based on lacunarity values extracted
from brain tumor MRI scans. Brain tumors exhibit a heterogeneous nature, characterized
by diverse spatial patterns and distributions of tumor components such as necrotic areas,
cysts, and solid masses. Existing approaches struggle to accurately capture these varia-
tions, as they rely on predefined features that do not adequately represent the intricate
spatial relationships within tumors. By incorporating Gray-Level Run Length Matrix
(GLRLM), Gray-Level Size Zone Matrix (GLSZM), and Gaussian Kernel to improve the
accuracy of survival rate predictions.

3.3.1. Capturing Texture Information from MRI Images. The GLRLM technique is in-
troduced to effectively capture and quantify texture information within brain tumor MRI
scans. Its primary purpose is to analyze the length of consecutive pixels exhibiting the
same gray-level intensity across different directions, typically measured at 0◦, 45◦, 90◦,
and 135◦ angles. This approach enables the characterization of linear structures present
in tumor components, such as necrotic areas, solid masses, and cysts. GLRLM operates
by constructing matrices that count the occurrences of consecutive pixel runs for each
gray-level intensity and direction, which extracts statistical measures from GLRLM ma-
trices, including Short Run Emphasis (SRE), Long Run Emphasis (LRE), Gray-Level
Non-Uniformity (GLN), Run Length Non-Uniformity (RLN), Run Percentage (RP), and
Run Entropy (RE). By computing these run lengths, the technique provides detailed in-
sights into the spatial distribution and arrangement of textures within the MRI images.
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This information is crucial for understanding the internal morphology of brain tumors,
which exhibit heterogeneous patterns and complexities that existing imaging markers
overlook, and enhances the ability to distinguish between different tumor types based on
their textural characteristics.

By integrating GLRLM into analysis within stacked CNN architectures, researchers and
clinicians derive meaningful features that improve the accuracy of tumor classification and
survival rate predictions. Thus, GLRLM contributes significantly to advancing the clinical
interpretation of MRI data and enhancing decision-making in the management of brain
tumors.

3.3.2. Evaluating Size Variations of Homogeneous Zones. The GLSZM technique is uti-
lized to quantify and analyze size variations of homogeneous zones within brain tumor
MRI scans. Its primary purpose is to assess the spatial distribution and size of homoge-
neous areas, providing valuable insights into the internal structure of tumors. GLSZM
achieves this by calculating several metrics that describe the characteristics of these ho-
mogeneous zones. These metrics include measures of zone size variability and intensity
variation across different regions of the image. By systematically analyzing these pa-
rameters, GLSZM helps in identifying and delineating distinct regions within the tumor,
such as areas of uniform intensity or texture, and complements other image processing
techniques by offering detailed information about the distribution of homogeneous zones.
This information is critical for understanding the heterogeneous nature of tumors, where
different regions exhibit varying sizes and intensities of homogeneous areas.

Integrating GLSZM into analytical frameworks, such as alongside Gray-Level Run
Length Matrix (GLRLM) and other texture analysis methods within stacked CNN ar-
chitectures, enhances the overall capability to characterize tumor morphology accurately.
This comprehensive approach enables features that improve the classification of brain tu-
mors based on their internal structure. Ultimately, it contributes to advancing the clinical
interpretation of MRI data and supports more informed decision-making in the diagnosis
and treatment planning for patients with brain tumors.

3.3.3. Enhancing the Features of Spatial Distribution. The Gaussian Kernel is employed
to enhance the spatial relationships and reduce noise within the data extracted from
techniques like GLRLM and GLSZM in the brain tumor analysis from MRI scans. Its
primary purpose is to emphasize the spatial distribution of features, thereby ensuring that
subtle variations in the arrangement of tumor components are accurately captured.

This technique works by convolving the image data with a Gaussian function, which
effectively smooths out abrupt changes or noise in the spatial domain. By applying
the Gaussian Kernel, the spatial representation of features derived from GLRLM and
GLSZM is enhanced, leading to a more refined understanding of the spatial characteristics
of brain tumors. This smoothing process is crucial as it helps to highlight meaningful
spatial relationships while suppressing irrelevant variations or noise that may obscure
important structural details within the MRI images. By integrating the Gaussian Kernel
into the feature extraction process supports the accurate measurement of spatial patterns
and morphological variations. It ensures that the extracted features are robust against
minor inconsistencies in the image data, thereby improving the reliability of quantitative
assessments of tumor characteristics.

By incorporating the Gaussian Kernel within a stacked CNN architecture alongside
other advanced image processing techniques, such as GLRLM and GLSZM, the overall
framework becomes more adept at capturing and interpreting the spatial complexities
of brain tumors. This approach facilitates better characterization of tumor morphology
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from MRI scans, aiding in more precise diagnosis, treatment planning, and monitoring of
patients with brain tumors.

Algorithm 3 Gaussian Gray-level Size Length Matrix (GGSLM)

1: Input:
2: MRI scans of brain tumors
3: Output:
4: Texture information capturing spatial distributions and variations
5: Improved accuracy in survival rate predictions

6: Start:
7: Step 1: Preprocessing
8: Normalize MRI scans to a standard intensity range.
9: Apply Gaussian smoothing to reduce noise and enhance texture details.
10: Step 2: Gray-Level Run Length Matrix (GLRLM)
11: Compute GLRLM for each MRI scan to capture texture information.
12: Define directions (0°, 45°, 90°, 135°) for pixel run length calculations.
13: Construct matrices counting occurrences of consecutive pixel runs for each gray-

level intensity and direction.
14: Step 3: Texture Feature Extraction
15: Extract statistical measures from GLRLM matrices.
16: Step 4: Gray-Level Size Zone Matrix (GLSZM)
17: Compute GLSZM to analyze size variations of homogeneous zones.
18: Calculate metrics to describe homogeneous zone sizes and intensity variations

across different image regions.
19: Step 5: Integration with Gaussian Kernel
20: Convolve GLRLM and GLSZM data with a Gaussian Kernel to enhance spatial

relationships and reduce noise.
21: Adjust kernel parameters (e.g., standard deviation) to optimize feature extrac-

tion.
22: Step 6: Feature Enhancement
23: Combine enhanced GLRLM and GLSZM features to capture comprehensive

spatial distributions and morphological variations of brain tumors.
24: Step 7: Analysis and Interpretation
25: Utilize the enriched feature set for survival rate prediction analysis.
26: Evaluate the impact of spatial texture features on prediction and treatment

planning.
27: End

Figure 6 outlines the Flowchart of Gaussian Gray-level Size Length Matrix. It begins
with normalization, which involves setting up data and model parameters. The Gray-Level
Run Length Matrix (GLRLM) is constructed and computed, capturing texture informa-
tion within the MRI data. Texture features are extracted from this information. The
Gray-Level Size Zone Matrix (GLSZM) is computed, quantifying size variations within
the MRI data. The Gaussian Kernel is integrated into the model, emphasizing spatial
relationships within the MRI data. Feature enhancement is done to improve representa-
tion. The enhanced features are analyzed and interpreted to make predictions about brain
tumor classification and survival rate. The process ends with the process. This simplified
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Figure 6. Flowchart of Gaussian Gray-level Size Length Matrix (GGSLM)

flowchart provides a visual representation of the proposed method, aiming to address chal-
lenges in extracting cerebral venous systems and classifying brain tumors more accurately.
It is a useful tool for understanding the complex medical image processing technique.

Overall, the Dynamic Multiscale Frangi Susceptibility-Weighted Contrast approach is
a new framework designed to improve brain tumor imaging and venous system visual-
ization from MRI scans. It combines advanced imaging modalities and deep learning
techniques to enhance visualization, classification, perfusion dynamics, and texture and
spatial analysis. The method uses the Multiscale Frangi Filter and SWI to improve the
clarity and contrast of cerebral venous structures, enabling accurate delineation of vascu-
lature around tumors and detecting vascular anomalies. The ESCCRT framework within
a stacked CNN architecture improves the classification of brain tumors, extracting in-
tricate features related to vascular patterns and tumor characteristics from MRI data.
DSC imaging provides dynamic information on cerebral blood flow, essential for assessing
tumor vascularity and monitoring treatment responses. The GGSLM technique captures
textural variations and spatial distributions within tumors, supporting survival rate pre-
dictions considering the heterogeneous nature of brain tumors. This approach represents a
significant advancement in neuroimaging diagnostics, enhancing clinical decision-making
and patient outcomes in neurology and oncology.

4. Results and Discussion. This section presents the results achieved by the proposed
model, showing significant improvements in brain tumor classification accuracy. Vali-
dation of the prediction accuracy was conducted by comparing it with other existing
approaches.

4.1. Tool & System Specification.

• Software: Python
• OS: Windows 10 (64-bit)
• Processor: Intel i5
• RAM: 8GB RAM
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4.2. Dataset Description. The datasets for the BraTS challenge have been updated
since BraTS’18, now featuring more routinely acquired 3T multimodal MRI scans. Val-
idation data will be released on July 15, allowing participants to generate preliminary
results and include them in their submitted papers. Test data will be distributed via
email between August 7 and September 7, with top-ranked teams invited to prepare
slides for a brief oral presentation. This year’s BraTS challenge includes training, valida-
tion, and testing datasets comprising pre-operative multimodal MRI scans of glioblastoma
and lower grade glioma, accompanied by pathologically confirmed diagnoses and overall
survival data. This dataset was taken from:
https://www.kaggle.com/datasets/aryashah2k/brain-tumor-segmentation-brats-2019

https://www.kaggle.com/datasets/awsaf49/brats20-dataset-training-validation

4.3. Simulation Outputs of Suggested Model. This section consists of the simulated
results of the suggested model.

(a) Test Input Images

(b) Frangi Filter Response

Figure 7. Simulated Output Brain Classification using Frangi Filter

Figure 7 (a, b) represents the input images and Frangi filter response of three MRI brain
scans, revealing the overall brain structure, abnormal tissue characteristics, and specific
brain structures. These scans are crucial for medical diagnosis, treatment planning, and
monitoring neurological conditions. The Frangi filter enhances the detection of tubular
structures like blood vessels or airways by emphasizing their edges and suppressing other
features.

This technique is useful in tasks like medical imaging analysis, where detecting vessels
or tubular structures is crucial. The Frangi filter’s response is demonstrated through
grayscale plots, with darker areas indicating lower values and brighter areas indicating
higher values. This variation in brightness demonstrates how the filter responds to differ-
ent features within an image, making it valuable in brain tumor detection.
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Figure 8. Tumor Detection (Input and CNN response images)

Figure 8 presents the axial MRI brain scans for tumor detection. The first scan, cor-
responding to a lower level of the brain, provides an overview of brain structures like the
cerebral cortex, ventricles, and basal ganglia. The second scan, slightly higher, reveals
more detailed features like the thalamus, hippocampus, and white matter tracts. The
third scan, representing a central level, shows structures like the corpus callosum and lat-
eral ventricles, and reveals pathological changes like tumors or vascular lesions. The fourth
scan, higher than the fifth scan, offers a view of superior brain structures, including the
cerebellum and brainstem. The sixth scan captures the topmost structures, such as the
superior sagittal sinus and cortical gyri. These scans are crucial for diagnosing neurologi-
cal conditions, planning surgeries, and monitoring treatment progress, allowing clinicians
to visualize brain anatomy and identify potential issues without invasive procedures.

4.4. Performance Analysis of Suggested Model. This section provides a detailed ex-
planation of the performance analysis of the suggested model using varied epochs (ranging
from 10 to 50), which represents one complete cycle for presenting the entire training data
to the neural network and updating its weights and biases.

Figure 9. ROC curve of suggested model

Figure 9 shows ROC curves representing the performance of the suggested model, with
the False Positive Rate (FPR) and True Positive Rate (TPR) ranging from 0 to 100%.
This indicates the models and their respective Area Under the Curve (AUC) values. The
ROC curves show how well each model distinguishes between classes, with higher AUC
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values indicating better classification abilities. The proposed model performs exception-
ally well with an AUC of 99%, making it the most effective model based on the AUC
value.

Figure 10. Accuracy of suggested model

Figure 10 depicts the accuracy of the suggested model. The process initially begins at
the 10 epochs when the accuracy is 44% and it then improves through the process and
at 50 epochs, accuracy improves to the peak of 98%. By aggregating predictions from
multiple ERTs, ESCCRT reduces overfitting and improves generalization to unseen data,
thereby enhancing the overall accuracy of tumor classification and survival prediction.

Figure 11. Precision of suggested model

Figure 11 depicts the precision of the suggested model. The process initially begins at
the 10 epochs when the precision is 52% and it then improves through the process and at
50 epochs, precision improves to the peak of 98%. DMF-SWC operates by analyzing the
local structure of the image at multiple scales and identifying vessel-like structures based
on their eigenvalues.

This method is particularly sensitive to the precision of vessel detection, ensuring that
only true vessel structures are enhanced while minimizing false positives.
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Figure 12. F1-Score of suggested model

Figure 12 depicts the F1-Score of the suggested model. The process initially begins at
the 10 epochs when the F1-Score is 72% and it then improves through the process and
at 50 epochs, F1-Score improves to the peak of 97%. DMF-SWC improves precision by
accurately detecting vessel structures and boundaries, reducing false positives. It also
enhances recall by minimizing false negatives, ensuring that vessel structures are not
missed.

Figure 13. Recall of suggested model

Figure 13 depicts the Recall of the suggested model. The process initially begins at
the 10 epochs when the Recall is 75% and it then improves through the process and at
50 epochs, Recall improves to the peak of 99%. DMF-SWC enhances recall by effectively
detecting and capturing vessel-like structures across multiple scales and contrasts. Its
multiscale approach helps in capturing vessels of varying sizes and intensities, thereby
minimizing the chances of missing any vessel structure.

Figure 14 depicts the Sensitivity of the suggested model. The process initially begins at
the 10 epochs when the Sensitivity is 43% and it then improves through the process and
at 50 epochs, Sensitivity improves to the peak of 98%. DMF-SWC enhances sensitivity by
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Figure 14. Sensitivity of suggested model

effectively detecting and capturing vessel-like structures across multiple scales and con-
trasts. Its multiscale approach helps in capturing vessels of varying sizes and intensities,
therefore reducing the possibility of overlooking any vessel construction.

Figure 15. Specificity of suggested model

Figure 15 depicts the Specificity of the suggested model. The process initially begins at
the 10 epochs when the Specificity is 65% and it then improves through the process and
at 50 epochs, Specificity improves to the peak of 98%. ESCCRT improves specificity by
efficiently classifying negative instances and minimizing false positives, thereby enhancing
the model’s ability to distinguish between different classes with higher accuracy.

Figure 16 depicts the Mathews Correlation Coefficient (MCC) of the suggested model.
The process initially begins at the 10 epochs when the MCC is 0.65 and it then im-
proves through the process and at 50 epochs, MCC increases to the peak of 0.98. By
using ESCCRT, being a decision tree-based classifier, it is known for its ability to handle
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Figure 16. MCC of suggested model

complex decision boundaries and hierarchical data structures, that accounts true posi-
tives, true negatives, false positives, and false negatives, providing a balanced measure of
classification performance which improves MCC.

Figure 17. FPR of suggested model

Figure 17 depicts the False positive rate (FPR) of the suggested model. The process
initially begins at the 10 epochs when the FPR is 0.10% and it then decreases through the
process and at 50 epochs, FPR reduces to the rate of 0.008%. FPR measures the ratio
of false positives to actual negative instances. ESCCRT, a variant of Random Forests
or Decision Trees, improves classification accuracy by reducing false positives and false
negatives and its optimization of decision boundaries and ensemble learning techniques
helps control FPR by minimizing false positives during classification.

Figure 18 depicts the False Negative Rate (FNR) of the suggested model. The process
initially begins at the 10 epochs when the FNR is 4.3% and it then improves through
the process and at 50 epochs, FNR decreases to 2.7%. DMF-SWC focuses on enhancing
sensitivity and recall, which are metrics directly related to minimizing false negatives by
correctly identifying positive instances, which is crucial in medical imaging as it measures
the ratio of incorrectly classified negative instances (actual positives) to the total number
of actual positive instances to reduce the negative rate of the model.



Enhanced Brain Tumor Detection Using Frangi Gaussian Matrix and CNNs on MRI 263

Figure 18. FNR of suggested model

4.5. Comparison of Suggested Model with Other Models. This section emphasizes
the performance of the proposed method by comparing its results with those of existing
approaches, using various metrics to showcase the differences.

Figure 19. Comparison of Suggested Model Accuracy with Other Models

Figure 19 illustrates a comparison of the accuracy of the suggested model with other
existing techniques, such as KNN, AlexNet, VGG-16, and GoogleNet. The accuracy of
the suggested model obtains the value of 98%, whereas KNN, AlexNet, VGG-16, and
GoogleNet are 78%, 87%, 84%, and 89%, respectively. The suggested model achieved
high accuracy in brain tumor classification, whereas KNN demonstrated lower accuracy.

Figure 20 illustrates a comparison of the precision of the suggested model with other
existing techniques, such as KNN, AlexNet, VGG-16, and GoogleNet. The precision of
the suggested model obtains the value of 98% whereas KNN, AlexNet, VGG-16, and
GoogleNet are 73%, 94%, 89%, and 96%, respectively. The suggested model exhibited
high precision in brain tumor classification, while KNN showed low precision.

Figure 21 illustrates a comparison of the recall of the suggested model with other exist-
ing techniques, such as KNN, AlexNet, VGG-16, and GoogleNet. The recall of the sug-
gested model obtains the value of 99% whereas KNN, AlexNet, VGG-16, and GoogleNet
are 80%, 95%, 93%, and 95.1%, respectively. The suggested model demonstrated high
recall in brain tumor classification, whereas KNN exhibited low recall.
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Figure 20. Comparison of Suggested Model Precision with Other Models

Figure 21. Comparison of Suggested Model Recall with Other Models

Figure 22 illustrates a comparison of the F1-score of the suggested model with other
existing techniques, such as KNN, AlexNet, VGG-16, and GoogleNet. The F1-score of
the suggested model obtains the value of 97% whereas KNN, AlexNet, VGG-16, and
GoogleNet are 68%, 88%, 85%, and 90%, respectively. The suggested model achieved a
high F1-score in brain tumor classification, whereas KNN obtained a low F1-score.

Figure 23 illustrates a comparison of the Sensitivity of the suggested model with other
existing techniques, such as KNN, AlexNet, VGG-16, and GoogleNet. The Sensitivity
of the suggested model obtains the value of 98%, whereas KNN, AlexNet, VGG-16, and
GoogleNet are 46%, 84%, 81%, and 84%, respectively. The suggested model showed high
sensitivity in brain tumor classification, whereas KNN exhibited low sensitivity.

Figure 24 illustrates a comparison of the Specificity of the suggested model with other
existing techniques, such as KNN, AlexNet, VGG-16, and GoogleNet. The specificity
of the suggested model obtains the value of 98% whereas KNN, AlexNet, VGG-16, and
GoogleNet are 50%, 92%, 89%, and 95%, respectively. The specificity of Brain tumor
classification of the suggested model was high, whereas the specificity of Brain tumor
classification of KNN was low.
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Figure 22. Comparison of Suggested Model F1-Score with Other Models

Figure 23. Comparison of Suggested Model Sensitivity with Other Mod-
els

Figure 25 illustrates a comparison of the FPR of the suggested model with other ex-
isting techniques, such as Finetree, Linear discriminant, SVM, and wide neural network.
The FPR of the suggested model obtains the value of 0.008% whereas Finetree, Linear
discriminant, SVM, and wide neural network are 0.0275%, 0.0125%, 0.10%, and 0.0150%,
respectively. The suggested model had a low false positive rate (FPR) in brain tumor
classification, while SVM showed a high false positive rate.

Figure 26 illustrates a comparison of the FNR of the suggested model with other ex-
isting techniques, such as Finetree, Linear discriminant, SVM, and wide neural network.
The FNR of the suggested model obtains the value of 2.7% whereas Finetree, Linear dis-
criminant, SVM, and wide neural network are 7.5%, 4.2%, 5.5%, and 4.6%, respectively.
The suggested model had a low false negative rate (FNR) in brain tumor classification,
while SVM exhibited a high false negative rate.

Figure 27 presents a comparison of the Matthews correlation coefficient (MCC) between
the suggested model and other existing techniques, including ResNet 50, VGG-16, and
Inception V3. The MCC of the suggested model achieved a value of 0.98, whereas ResNet
50, VGG-16, and Inception V3 attained MCC values of 0.93, 0.93, and 0.95, respectively.
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Figure 24. Comparison of Suggested Model Specificity with Other Models

Figure 25. Comparison of Suggested Model FPR with Other Models

The MCC for brain tumor classification was high for the suggested model, whereas it was
low for ResNet 50 and VGG-16.

Figure 28 illustrates the Receiver Operating Characteristic (ROC) curve to evaluate
the performance of various models. It shows multiple ROC curves, each representing the
performance of a different model. The graph shows True Positive Rate (TPR) and False
Positive Rate (FPR) values, and the models and their respective Area Under the Curve
(AUC) values. The proposed model has an AUC of 99%, outperforming InceptionV3,
VGG16, ResNet50, and Random Classifier. Higher AUC values indicate better model
performance in correctly classifying positive and negative instances. The proposed model,
with an AUC of 99%, is the most effective based on the AUC value. Overall, the graph
provides valuable insights into the classification abilities of different models.

Overall, the Multiscale Frangi susceptibility Cat Randomized Gaussian Gray-level Ma-
trix outperforms other existing methods in brain tumor classification. It achieves high
accuracy, precision, recall, F1-score, sensitivity, specificity, FPR, FNR, and MCC against
other prominent techniques like KNN, AlexNet, VGG-16, GoogleNet, SVM, and more.
The suggested model consistently achieves superior results across all metrics, demonstrat-
ing high accuracy of 98%, precision of 98%, recall of 99%, F1-score of 97%, sensitivity
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Figure 26. Comparison of Suggested Model FNR with Other Models

Figure 27. Comparison of Suggested Model MCC with Other Models

Figure 28. Comparison of Proposed Model ROC-AUC Curve with Other
Models

of 98%, specificity of 98%, low FPR of 0.008%, low FNR of 2.7%, and a high MCC of
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0.98. These findings underscore its effectiveness in brain tumor classification compared
to traditional and deep learning models, as illustrated in the ROC-AUC curve, where it
outperforms competitors with an AUC of 99%.

5. Conclusion. Recognizing brain tumor is crucial as they lead to a range of neuro-
logical disorders. For identifying brain tumor classification and to predict the survival
rate, an innovative methodology was proposed, namely Multiscale Frangi susceptibility
Cat Randomized Gaussian Gray-level Matrix. This framework, integrating Dynamic Mul-
tiscale Frangi Susceptibility-Weighted Contrast (DMF-SWC), Extreme Spatial Channel
Cat Randomized Trees (ESCCRT), and Gaussian Gray-level size length matrix represents
a significant advancement in brain tumor classification using MRI scans. This model
addresses critical challenges in accurate tumor characterization by leveraging advanced
imaging techniques and machine learning algorithms. DMF-SWC enhances the visualiza-
tion of cerebral venous structures and improves precision of 98%, recall of 99%, F1-score of
97%, sensitivity of 98% and FNR at 2.7% in detecting vessel-like patterns across varying
scales and contrasts. This capability is crucial for distinguishing subtle vascular anom-
alies crucial for accurate tumor delineation. Meanwhile, ESCCRT, incorporating Spatial
Channel-Wise Attention and Extreme Randomized Trees within a stacked CNN archi-
tecture, effectively integrates features related to venous collateralization patterns and
peritumoral edema characteristics. This integration not only enhances accuracy of 98%,
specificity of 98%, MCC of 0.98, low FPR of 0.008%, while also enhancing the model’s
capability to accurately classify various types of brain tumors. Furthermore, achieving an
AUC of 99% in ROC analysis confirms the model’s exceptional capability in distinguishing
between tumor and non-tumor instances, highlighting its superiority over existing meth-
ods and then, GGSLM classifies survival rate prediction accurately. Overall, this novel
approach not only advances the state-of-the-art in brain tumor classification but also
promises significant improvements in patient care by providing more accurate diagnostic
and prognostic information.
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[18] M.M. Badža, and M.Č. Barjaktarović, “Classification of brain tumors from MRI images using a
convolutional neural network,” Applied Sciences, vol. 10, no. 6, 2020, pp. 1999.

[19] C.H. Toh, and M. Castillo, “Peritumoral brain edema volume in meningioma correlates with tumor
fractional anisotropy but not apparent diffusion coefficient or cerebral blood volume,”Neuroradiology,
vol. 63, 2021, pp. 1263-1270.

[20] M. Islam, V.S. Vibashan, V.J.M. Jose, N. Wijethilake, U. Utkarsh, and H. Ren, “Brain tumor
segmentation and survival prediction using 3D attention UNet,” BrainLes 2019, Springer, 2020, pp.
262-272.

[21] L. Curtin, P. Whitmire, H. White, M.M. Mrugala, L.S. Hu, and K.R. Swanson, “Morphological
Metrics of Magnetic Resonance Imaging of Glioblastoma as Biomarkers of Prognosis,” bioRxiv, 2021.

[22] H. Kibriya, R. Amin, J. Kim, M. Nawaz, and R. Gantassi, “A novel approach for brain tumor
classification using an ensemble of deep and hand-crafted features,” Sensors, vol. 23, no. 10, 2023,
pp. 4693.

[23] A. Sarkar, M. Maniruzzaman, M.A. Alahe, and M. Ahmad, “An effective and novel approach for brain
tumor classification using AlexNet CNN feature extractor and multiple eminent machine learning
classifiers in MRIs,” Journal of Sensors, 2023.

[24] K.V. Archana, and G. Komarasamy, “A novel deep learning-based brain tumor detection using the
Bagging ensemble with K-nearest neighbor,” Journal of Intelligent Systems, vol. 32, no. 1, 2023.

[25] E. Ghafourian, F. Samadifam, H. Fadavian, P. Jerfi Canatalay, A. Tajally, and S. Channumsin, “An
ensemble model for the diagnosis of brain tumors through MRIs,” Diagnostics, vol. 13, no. 3, 2023,
pp. 561.

[26] D. Zhong, J. Wang, Y. Guo, Y. Liu, J. Chen, and T. Xu, “A Frangi filter aided deep learning
approach for palaeochannel recognition,” Geophysical Journal International, vol. 236, no. 3, 2024,
pp. 1526-1544.

[27] B. Li, H. Ren, X. Jiang, F. Miao, F. Feng, and L. Jin, “SCEP—A new image dimensional emotion
recognition model based on spatial and channel-wise attention mechanisms,” IEEE Access, vol. 9,
2021, pp. 25278-25290.

[28] N. Nguyen, T. Duong, T. Chau, V.H. Nguyen, T. Trinh, D. Tran, and T. Ho, “A proposed model
for card fraud detection based on Catboost and deep neural network,” IEEE Access, vol. 10, 2022,
pp. 96852-96861.



270 Sheethal. M. S, P. Amudha

[29] F. Li, H. Gong, B. Chen, C. Zhou, and L. Guo, “Analysis of the contribution rate of the influencing
factors to land subsidence in the Eastern Beijing plain, China based on extremely randomized trees
(ERT) method,” Remote Sensing, vol. 12, no. 18, 2020, pp. 2963.

[30] I. Abd El Kader, G. Xu, Z. Shuai, S. Saminu, I. Javaid, and I. Salim Ahmad, “Differential deep
convolutional neural network model for brain tumor classification,” Brain Sciences, vol. 11, no. 3,
2021, pp. 352.

[31] U. Zahid, I. Ashraf, M.A. Khan, M. Alhaisoni, K.M. Yahya, H.S. Hussein, and H. Alshazly, “Brain-
Net: optimal deep learning feature fusion for brain tumor classification,” Computational Intelligence
and Neuroscience, vol. 2022, 2022, pp. 1465173.

[32] A.U. Haq, J.P. Li, R. Kumar, Z. Ali, I. Khan, M.I. Uddin, and B.L.Y. Agbley, “MCNN: a multi-level
CNN model for the classification of brain tumors in IoT-healthcare system,” Journal of Ambient
Intelligence and Humanized Computing, vol. 14, no. 5, 2023, pp. 4695-4706.


